solidot新版网站常见问题,请点击这里查看。

Limitations on Transversal Computation through Quantum Homomorphic Encryption. (arXiv:1704.07798v1 [quant-ph])

来源于:arXiv
Transversality is a simple and effective method for implementing quantum computation fault-tolerantly. However, no quantum error-correcting code (QECC) can transversally implement a quantum universal gate set (Eastin and Knill, Phys. Rev. Lett., 102, 110502). Since reversible classical computation is often a dominating part of useful quantum computation, whether or not it can be implemented transversally is an important open problem. We show that, other than a small set of non-additive codes that we cannot rule out, no binary QECC can transversally implement a classical reversible universal gate set. In particular, no such QECC can implement the Toffoli gate transversally. We prove our result by constructing an information theoretically secure (but inefficient) quantum homomorphic encryption (ITS-QHE) scheme inspired by Ouyang et al. (arXiv:1508.00938). Homomorphic encryption allows the implementation of certain functions directly on encrypted data, i.e. homomorphically. Our scheme bui 查看全文>>