solidot新版网站常见问题,请点击这里查看。

Asymptotics with respect to the spectral parameter and Neumann series of Bessel functions for solutions of the one-dimensional Schr\"odinger equation. (arXiv:1706.09457v1 [math.CA])

来源于:arXiv
A representation for a solution $u(\omega,x)$ of the equation $-u"+q(x)u=\omega^2 u$, satisfying the initial conditions $u(\omega,0)=1$, $u'(\omega,0)=i\omega$ is derived in the form \[ u(\omega,x)=e^{i\omega x}\left( 1+\frac{u_1(x)}{\omega}+ \frac{u_2(x)}{\omega^2}\right) +\frac{e^{-i\omega x}u_3(x)}{\omega^2}-\frac{1}{\omega^2}\sum_{n=0}^{\infty} i^{n}\alpha_n(x)j_n(\omega x), \] where $u_m(x)$, $m=1,2,3$ are given in a closed form, $j_n$ stands for a spherical Bessel function of order $n$ and the coefficients $\alpha_n$ are calculated by a recurrent integration procedure. The following estimate is proved $\vert u(\omega,x) -u_N(\omega,x)\vert \leq \frac{1}{\vert \omega \vert^2}\varepsilon_N(x)\sqrt{\frac{\sinh(2\mathop{\rm Im}\omega\,x)}{\mathop{\rm Im}\omega}}$ for any $\omega\in\mathbb{C}\backslash \{0\}$, where $u_N(\omega,x)$ is an approximate solution given by truncating the series in the representation for $u(\omega,x)$ and $\varepsilon_N(x)$ is a nonnegative function tending 查看全文>>