solidot新版网站常见问题,请点击这里查看。

Convergent Iteration in Sobolev Space for Time Dependent Closed Quantum Systems. (arXiv:1706.09788v1 [math.AP])

来源于:arXiv
Time dependent quantum systems have become indispensable in science and its applications, particularly at the atomic and molecular levels. Here, we discuss the approximation of closed time dependent quantum systems on bounded domains, via iterative methods in Sobolev space based upon evolution operators. Recently, existence and uniqueness of weak solutions were demonstrated by a contractive fixed point mapping defined by the evolution operators. Convergent successive approximation is then guaranteed. This article uses the same mapping to define quadratically convergent Newton and approximate Newton methods. Estimates for the constants used in the convergence estimates are provided. The evolution operators are ideally suited to serve as the framework for this operator approximation theory, since the Hamiltonian is time dependent. In addition, the hypotheses required to guarantee quadratic convergence of the Newton iteration build naturally upon the hypotheses used for the existence/uniq 查看全文>>