adv

Exploiting Problem Structure in Optimization under Uncertainty via Online Convex Optimization. (arXiv:1709.02490v2 [math.OC] UPDATED)

来源于:arXiv
In this paper, we consider two paradigms that are developed to account for uncertainty in optimization models: robust optimization (RO) and joint estimation-optimization (JEO). We examine recent developments on efficient and scalable iterative first-order methods for these problems, and show that these iterative methods can be viewed through the lens of online convex optimization (OCO). The standard OCO framework has seen much success for its ability to handle decision-making in dynamic, uncertain, and even adversarial environments. Nevertheless, our applications of interest present further flexibility in OCO via three simple modifications to standard OCO assumptions: we introduce two new concepts of weighted regret and online saddle point problems and study the possibility of making lookahead (anticipatory) decisions. Our analyses demonstrate that these flexibilities introduced into the OCO framework have significant consequences whenever they are applicable. For example, in the stron 查看全文>>