solidot新版网站常见问题,请点击这里查看。

A quantum mechanical well and a derivation of a $\pi^2 $ formula. (arXiv:1710.03313v1 [math-ph])

来源于:arXiv
Quantum particle bound in an infinite, one-dimensional square potential well is one of the problems in Quantum Mechanics (QM) that most of the textbooks start from. There, calculating an allowed energy spectrum for an arbitrary wave function often involves Riemann zeta function resulting in a $\pi$ series. In this work, two "$\pi$ formulas" are derived when calculating a spectrum of possible outcomes of the momentum measurement for a particle confined in such a well, the series, $\frac{\pi^2}{8} = \sum_{k=1}^{k=\infty} \frac{1}{(2k-1)^2}$, and the integral $\int_{-\infty}^{\infty} \frac{sin^2 x}{x^2} dx =\pi$. The spectrum of the momentum operator appears to peak on classically allowed momentum values only for the states with even quantum number. The present article is inspired by another quantum mechanical derivation of $\pi$ formula in \cite{wallys}. 查看全文>>