solidot新版网站常见问题,请点击这里查看。

A New Perspective on Robust $M$-Estimation: Finite Sample Theory and Applications to Dependence-Adjusted Multiple Testing. (arXiv:1711.05381v1 [math.ST])

来源于:arXiv
Heavy-tailed errors impair the accuracy of the least squares estimate, which can be spoiled by a single grossly outlying observation. As argued in the seminal work of Peter Huber in 1973 [{\it Ann. Statist.} {\bf 1} (1973) 799--821], robust alternatives to the method of least squares are sorely needed. To achieve robustness against heavy-tailed sampling distributions, we revisit the Huber estimator from a new perspective by letting the tuning parameter involved diverge with the sample size. In this paper, we develop nonasymptotic concentration results for such an adaptive Huber estimator, namely, the Huber estimator with the tuning parameter adapted to sample size, dimension, and the variance of the noise. Specifically, we obtain a sub-Gaussian-type deviation inequality and a nonasymptotic Bahadur representation when noise variables only have finite second moments. The nonasymptotic results further yield two conventional normal approximation results that are of independent interest, th 查看全文>>