adv

致长期以来一直关注solidot的海内外朋友,请点击这里查看。

信息流

  • Millimeter wave (mmWave) communication has attracted increasing attention as a promising technology for 5G networks. One of the key architectural features of mmWave is the use of massive antenna arrays at both the transmitter and the receiver sides. Therefore, by employing directional beamforming (BF), both mmWave base stations (MBSs) and mmWave users (MUEs) are capable of supporting multi-beam simultaneous transmissions. However, most researches have only considered a single beam, which means that they do not make full potential of mmWave. In this context, in order to improve the performance of short-range indoor mmWave networks with multiple reflections, we investigate the challenges and potential solutions of downlink multi-user multi-beam transmission, which can be described as a high-dimensional (i.e., beamspace) multi-user multiple-input multiple-output (MU-MIMO) technique, including multi-user BF training, simultaneous users' grouping, and multi-user multibeam power allocation.

    发表评论 查看更多 翻译此文

    收起

  • This paper focuses on a stochastic formulation of Bayesian attitude estimation on the special orthogonal group. In particular, an exponential probability density model for random matrices, referred to as the matrix Fisher distribution is used to represent the uncertainties of attitude estimates and measurements in a global fashion. Various stochastic properties of the matrix Fisher distribution are derived on the special orthogonal group, and based on these, two types of intrinsic frameworks for Bayesian attitude estimation are constructed. These avoid complexities or singularities of the attitude estimators developed in terms of quaternions. The proposed approaches are particularly useful to deal with large estimation errors or large uncertainties for complex maneuvers to obtain accurate estimates of the attitude.

    发表评论 查看更多 翻译此文

    收起

  • This paper describes wideband (1 GHz) base station diversity and coordinated multipoint (CoMP)-style large-scale measurements at 73 GHz in an urban microcell open square scenario in downtown Brooklyn, New York on the NYU campus. The measurements consisted of ten random receiver locations at pedestrian level (1.4 meters) and ten random transmitter locations at lamppost level (4.0 meters) that provided 36 individual transmitter-receiver (TX-RX) combinations. For each of the 36 radio links, extensive directional measurements were made to give insights into small-cell base station diversity at millimeter-wave (mmWave) bands. High-gain steerable horn antennas with 7-degree and 15-degree half-power beamwidths (HPBW) were used at the transmitter (TX) and receiver (RX), respectively. For each TX-RX combination, the TX antenna was scanned over a 120-degree sector and the RX antenna was scanned over the entire azimuth plane at the strongest RX elevation plane and two other elevation planes on bo

    发表评论 查看更多 翻译此文

    收起

  • This paper studies model order reduction of multi-agent systems consisting of identical linear passive subsystems, where the interconnection topology is characterized by an undirected weighted graph. Balanced truncation based on a pair of specifically selected generalized Gramians is implemented on the asymptotically stable part of the full-order networked model, which leads to a reduced-order system preserving the passivity of each subsystem. To restore the network structure, we then apply a coordinate transformation to convert the resulting reduced-order model to a state-space model of Laplacian dynamics. The proposed method simultaneously reduces the complexity of the network structure and individual agent dynamics. Moreover, it preserves the passivity of the subsystems and allows for the a priori computation of a bound on the approximation error. Finally, the feasibility of the method is demonstrated by an example.

    发表评论 查看更多 翻译此文

    收起

  • A classical result of Wente, motivated by the study of sessile capillarity droplets, demonstrates the axial symmetry of every hypersurface which meets a hyperplane at a constant angle and has mean curvature dependent only on the distance from that hyperplane. An analogous result is proven here for the fractional mean curvature operator.

    发表评论 查看更多 翻译此文

    收起

  • The Atiyah-Patodi-Singer(APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. The mathematical set-up for this theorem is, however, not directly related to the physical fermion system, as it imposes on the fermion fields a non-local boundary condition known as the "APS boundary condition" by hand, which is unlikely to be realized in the materials. In this work, we attempt to reformulate the APS index in a "physicist-friendly" way for a simple set-up with $U(1)$ or $SU(N)$ gauge group on a flat four-dimensional Euclidean space. We find that the same index as APS is obtained from the domain-wall fermion Dirac operator with a local boundary condition, which is naturally given by the kink structure in the mass term. As the boundary condition does not depend on the gauge fields, our new definition of the index is easy to compute with the standard Fujikawa method.

    发表评论 查看更多 翻译此文

    收起

  • We established and estimate the full asymptotic expansion in integer powers of 1 N of the [ $\sqrt$ N ] first marginals of N-body evolutions lying in a general paradigm containing Kac models and non-relativistic quantum evolution. We prove that the coefficients of the expansion are, at any time, explicitly computable given the knowledge of the linearization on the one-body meanfield kinetic limit equation. Instead of working directly with the corresponding BBGKY-type hierarchy, we follows a method developed in [22] for the meanfield limit, dealing with error terms analogue to the v-functions used in previous works. As a by-product we get that the rate of convergence to the meanfield limit in 1 N is optimal.

    发表评论 查看更多 翻译此文

    收起

  • CircleCI trusts 8 analytics companies with your source code and API tokens

    发表评论 查看更多 翻译此文

    收起

  • We establish necessary and sufficient conditions for boundedness of composition operators on the most general class of Hilbert spaces of entire Dirichlet series with real frequencies. Depending on whether or not the space contains any nonzero constant function, different criteria for boundedness are developed. Thus, we complete the characterization of bounded composition operators on all known Hilbert spaces of entire Dirichlet series of one variable.

    发表评论 查看更多 翻译此文

    收起

  • In applications that involve interactive curve and surface modeling, the intuitive manipulation of shapes is crucial. For instance, user interaction is facilitated if a geometrical object can be manipulated through control points that interpolate the shape itself. Additionally, models for shape representation often need to provide local shape control and they need to be able to reproduce common shape primitives such as ellipsoids, spheres, cylinders, or tori. We present a general framework to construct families of compactly-supported interpolators that are piecewise-exponential polynomial. They can be designed to satisfy regularity constraints of any order and they enable one to build parametric deformable shape models by suitable linear combinations of interpolators. They allow to change the resolution of shapes based on the refinability of B-splines. We illustrate their use on examples to construct shape models that involve curves and surfaces with applications to interactive modelin

    发表评论 查看更多 翻译此文

    收起

  • Motivated by the theory of weighted shifts on directed trees and its multivariable counterpart, we address the question of identifying commutant and reflexivity of the multiplication $d$-tuple $\mathscr M_z$ on a reproducing kernel Hilbert space $\mathscr H$ of $E$-valued holomorphic functions on $\Omega$, where $E$ is a separable Hilbert space and $\Omega$ is a bounded star-shaped domain in $\mathbb C^d$ with polynomially convex closure. In case $E$ is a finite dimensional cyclic subspace for $\mathscr M_z$, under some natural conditions on the $B(E)$-valued kernel associated with $\mathscr H$, the commutant of $\mathscr M_z$ is shown to be the algebra $H^{\infty}_{_{B(E)}}(\Omega)$ of bounded holomorphic $B(E)$-valued functions on $\Omega$, provided $\mathscr M_z$ satisfies the matrix-valued von Neumann's inequality. This generalizes a classical result of Shields and Wallen (the case of $\dim E=1$ and $d=1$). As an application, we determine the commutant of a Bergman shift on a leafl

    发表评论 查看更多 翻译此文

    收起

  • In 2009, Joselli et al introduced the Neighborhood Grid data structure for fast computation of neighborhood estimates in point clouds. Even though the data structure has been used in several applications and shown to be practically relevant, it is theoretically not yet well understood. The purpose of this paper is to present a polynomial-time algorithm to build the data structure. Furthermore, it is investigated whether the presented algorithm is optimal. This investigations leads to several combinatorial questions for which partial results are given.

    发表评论 查看更多 翻译此文

    收起

  • Let $k$ be a field of characteristic $\neq 2$. In this paper, we show that computing $n^{\rm th}$ root of an element of the group $SL_2(k)$ is equivalent to finding solutions of certain polynomial equations over the base field $k$. These polynomials are in two variables, and their description involves generalised Fibonacci polynomials. As an application, we prove some results on surjectivity of word maps over $SL_2(k)$. We prove that the word maps $X_1^2X_2^2$ and $X_1^4X_2^4X_3^4$ are surjective on $SL_2(k)$ and, with additional assumption that characteristic $\neq 3$, the word map $X_1^3X_2^3$ is surjective. Further, over finite field $\mathbb F_q$, $q$ odd, we show that the proportion of squares and, similarly, the proportion of conjugacy classes which are square in $SL_2(\mathbb F_q)$, is asymptotically $\frac{1}{2}$. More generally, for $n\geq 3$, a prime not dividing $q$ but dividing the order of $SL_2(\mathbb F_q)$, we show that the proportion of $n^{th}$ powers, and, similarly

    发表评论 查看更多 翻译此文

    收起

  • In any dimension $D$, the Euclidean Einstein-Hilbert action, which describes gravity in the absence of matter, can be discretized over random discrete spaces obtained by gluing families of polytopes together in all possible ways. In the physical limit of small Newton constant, only the spaces which maximize the mean curvature survive. In two dimensions, this results in a theory of random discrete spheres, which converge in the continuum limit towards the Brownian sphere, a random fractal space interpreted as a quantum random space-time. In this limit, the continuous Liouville theory of $D=2$ quantum gravity is recovered. Previous results in higher dimension regarded triangulations - gluings of tetrahedra or $D$-dimensional generalizations, leading to the continuum random tree, or gluings of simple colored building blocks of small sizes, for which multi-trace matrix model results are recovered. This work aims at providing combinatorial tools which would allow a systematic study of riche

    发表评论 查看更多 翻译此文

    收起

  • In this paper, we study the following fractional Schr\"{o}dinger-Poisson system \begin{equation*} \left\{ \begin{array}{ll} \varepsilon^{2s}(-\Delta)^su+V(x)u+\phi u=g(u) & \hbox{in $\mathbb{R}^3$,} \varepsilon^{2t}(-\Delta)^t\phi=u^2,\,\, u>0& \hbox{in $\mathbb{R}^3$,} \end{array} \right. \end{equation*} where $s,t\in(0,1)$, $\varepsilon>0$ is a small parameter. Under some local assumptions on $V(x)$ and suitable assumptions on the nonlinearity $g$, we construct a family of positive solutions $u_{\varepsilon}\in H_{\varepsilon}$ which concentrates around the global minima of $V(x)$ as $\varepsilon\rightarrow0$.

    发表评论 查看更多 翻译此文

    收起

  • We formalize the intuition that cohomologically rigid overconvergent isocrystals on dense affine open subsets of the projective line over a perfect field of positive characteristic are the ones with no nontrivial infinitesimal deformations that preserve the Robba fibers. En route, we describe a general result showing that the Hochschild cochain complex governs deformations of modules over arbitrary associative algebras in characteristic 0, and we explain a relationship between the Hochschild cochain complex and the de Rham complex.

    发表评论 查看更多 翻译此文

    收起

  • We give an introduction to generalisations of conjectures of Brumer and Stark on the annihilator of the class group of a number field. We review the relation to the equivariant Tamagawa number conjecture, the main conjecture of Iwasawa theory for totally real fields, and a conjecture of Gross on the behaviour of $p$-adic Artin $L$-functions at zero.

    发表评论 查看更多 翻译此文

    收起

  • In this paper, we study a full irreducible complete isoparametric submanifold of codimension greater than one in a symmetric space of non-compact type. First we prove that, if such an isoparametric submanifold admits a reflective focal submanifold, then it is curvature-adapted, where the ambient symmetric space may be of compact type. Next we prove that, if such an isoparametric submanifold admits a reflective focal submanifold and if it is of real analytic, then it is a principal orbit of a Hermann type action.

    发表评论 查看更多 翻译此文

    收起

  • Let S be a compact connected surface and let f be an element of the group Homeo\_0(S) of homeomorphisms of S isotopic to the identity. Denote by \tilde{f} a lift of f to the universal cover of S. Fix a fundamental domain D of this universal cover. The homeomorphism f is said to be non-spreading if the sequence (d\_{n}/n) converges to 0, where d\_{n} is the diameter of \tilde{f}^{n}(D). Let us suppose now that the surface S is orientable with a nonempty boundary. We prove that, if S is different from the annulus and from the disc, a homeomorphism is non-spreading if and only if it has conjugates in Homeo\_{0}(S) arbitrarily close to the identity. In the case where the surface S is the annulus, we prove that a homeomorphism is non-spreading if and only if it has conjugates in Homeo\_{0}(S) arbitrarily close to a rotation (this was already known in most cases by a theorem by B{\'e}guin, Crovisier, Le Roux and Patou). We deduce that, for such surfaces S, an element of Homeo\_{0}(S) is dist

    发表评论 查看更多 翻译此文

    收起

  • Advisers have concerns about "launch readiness" of space agency employees.

    发表评论 查看更多 翻译此文

    收起

  • Image quality is great, but the admirable TV app moonshot didn't quite make it.

    发表评论 查看更多 翻译此文

    收起

  • We obtain exact solutions to the two-dimensional (2D) Dirac equation for the one-dimensional P\"oschl-Teller potential which contains an asymmetry term. The eigenfunctions are expressed in terms of Heun confluent functions, while the eigenvalues are determined via the solutions of a simple transcendental equation. For the symmetric case, the eigenfunctions of the supercritical states are expressed as spheroidal wave functions, and approximate analytical expressions are obtained for the corresponding eigenvalues. A universal condition for any square integrable symmetric potential is obtained for the minimum strength of the potential required to hold a bound state of zero energy. Applications for smooth electron waveguides in 2D Dirac-Weyl systems are discussed.

    发表评论 查看更多 翻译此文

    收起

  •  

    Electric Buses Get a Power Boost

    10-09 MIT Technology 21

    We obtain exact solutions to the two-dimensional (2D) Dirac equation for the one-dimensional P\"oschl-Teller potential which contains an asymmetry term. The eigenfunctions are expressed in terms of Heun confluent functions, while the eigenvalues are determined via the solutions of a simple transcendental equation. For the symmetric case, the eigenfunctions of the supercritical states are expressed as spheroidal wave functions, and approximate analytical expressions are obtained for the corresponding eigenvalues. A universal condition for any square integrable symmetric potential is obtained for the minimum strength of the potential required to hold a bound state of zero energy. Applications for smooth electron waveguides in 2D Dirac-Weyl systems are discussed.

    发表评论 查看更多 翻译此文

    收起

  • Crypto Anchors: Exfiltration Resistant Infrastructure

    发表评论 查看更多 翻译此文

    收起

  • Civil Maps is one of the more exciting companies helping to build mobility infrastructure.

    发表评论 查看更多 翻译此文

    收起

  • Cypherpunk Desert Bus: My Role in the 2016 Zcash Trusted Setup Ceremony

    发表评论 查看更多 翻译此文

    收起

  • 'Staying longer at home' was key to stone age technology change 60k years ago

    发表评论 查看更多 翻译此文

    收起

  • Doitlive, a tool for live presentations in the terminal

    发表评论 查看更多 翻译此文

    收起

  • In this note we study graphs $G_r$ with the property that every colouring of $E(G_r)$ with $r+1$ colours admits a copy of some graph $H$ using at most $r$ colours. Such graphs occur naturally at intermediate steps in the synthesis of a $2$-colour Ramsey graph $G_1\longrightarrow H$. For $H=K_n$ we prove a result on building a $G_{r}$ from a $G_{r+1}$ and establish Ramsey-infiniteness. From the structural point of view, we characterise the class of the minimal $G_r$ in the case when $H$ is relaxed to be the graph property of containing a cycle; we then use it to progress towards a constructive description of that class by proving both a reduction and an extension theorem.

    发表评论 查看更多 翻译此文

    收起

  • In this paper we construct the abstract ideal of polynomials. We show that it is an ideal of Banach and, in a second moment, we explore the question of Coherence and Compatibility of the pair composed by the abstract ideals of polynomials and multilinear applications.

    发表评论 查看更多 翻译此文

    收起

  • In a previous paper we constructed a new class of Iwasawa modules as $\ell$--adic realizations of what we called abstract $\ell$--adic $1$--motives in the number field setting. We proved in loc. cit. that the new Iwasawa modules satisfy an equivariant main conjecture. In this paper we link the new modules to the $\ell$--adified Tate canonical class, defined by Tate in 1960 and give an explicit construction of (the minus part of) $\ell$--adic Tate sequences for any Galois CM extension $K/k$ of an arbitrary totally real number field $k$. These explicit constructions are significant and useful in their own right but also due to their applications (via our previous results on the Equivariant Main Conjecture in Iwasawa theory) to a proof of the minus part of the far reaching Equivariant Tamagawa Number Conjecture for the Artin motive associated to the Galois extension $K/k$.

    发表评论 查看更多 翻译此文

    收起

  • In hierarchical searches for continuous gravitational waves, clustering of candidates is an important postprocessing step because it reduces the number of noise candidates that are followed-up at successive stages [1][7][12]. Previous clustering procedures bundled together nearby candidates ascribing them to the same root cause (be it a signal or a disturbance), based on a predefined cluster volume. In this paper, we present a procedure that adapts the cluster volume to the data itself and checks for consistency of such volume with what is expected from a signal. This significantly improves the noise rejection capabilities at fixed detection threshold, and at fixed computing resources for the follow-up stages, this results in an overall more sensitive search. This new procedure was employed in the first Einstein@Home search on data from the first science run of the advanced LIGO detectors (O1) [11].

    发表评论 查看更多 翻译此文

    收起

  • We consider how many random edges need to be added to a graph of order $n$ with minimum degree $\alpha n$ in order that it contains the square of a Hamilton cycle w.h.p..

    发表评论 查看更多 翻译此文

    收起

  • We construct an even extremal lattice of rank 64 by means of a generalized quadratic residue code.

    发表评论 查看更多 翻译此文

    收起

  • This paper investigates estimation of the mean vector under invariant quadratic loss for a spherically symmetric location family with a residual vector with density of the form $ f(x,u)=\eta^{(p+n)/2}f(\eta\{\|x-\theta\|^2+\|u\|^2\}) $, where $\eta$ is unknown. We show that the natural estimator $x$ is admissible for $p=1,2$. Also, for $p\geq 3$, we find classes of generalized Bayes estimators that are admissible within the class of equivariant estimators of the form $\{1-\xi(x/\|u\|)\}x$. In the Gaussian case, a variant of the James--Stein estimator, $[1-\{(p-2)/(n+2)\}/\{\|x\|^2/\|u\|^2+(p-2)/(n+2)+1\}]x$, which dominates the natural estimator $x$, is also admissible within this class. We also study the related regression model.

    发表评论 查看更多 翻译此文

    收起

  • We give an exact formula of the average of adjoint $L$-functions of holomorphic Hilbert cusp forms with a fixed weight and a square-free level, which is a generalization of Zagier's formula known for the case of elliptic cusp forms on ${\rm SL}_2(\mathbb{Z})$. As an application, we prove that the Satake parameters of Hilbert cusp forms with a fixed weight and with growing square-free levels are equidistributed in an ensemble constructed by values of the adjoint $L$-functions.

    发表评论 查看更多 翻译此文

    收起

  • We give an explicit weak solution to the Schottky problem, in the spirit of Riemann and Schottky. For any genus $g$, we write down a collection of polynomials in genus $g$ theta constants, such that their common zero locus contains the locus of Jacobians of genus $g$ curves as an irreducible component. These polynomials arise by applying a specific Schottky-Jung proportionality to an explicit collection of quartic identities for theta constants in genus $g-1$, which are suitable linear combinations of Riemann's quartic relations.

    发表评论 查看更多 翻译此文

    收起

  • We propose a novel method to find Nash equilibria in games with binary decision variables by including compensation payments and incentive-compatibility constraints from non-cooperative game theory directly into an optimization framework in lieu of using first order conditions of a linearization, or relaxation of integrality conditions. The reformulation offers a new approach to obtain and interpret dual variables to binary constraints using the benefit or loss from deviation rather than marginal relaxations. The method endogenizes the trade-off between overall (societal) efficiency and compensation payments necessary to align incentives of individual players. We provide existence results and conditions under which this problem can be solved as a mixed-binary linear program. We apply the solution approach to a stylized nodal power-market equilibrium problem with binary on-off decisions. This illustrative example shows that our approach yields an exact solution to the binary Nash game w

    发表评论 查看更多 翻译此文

    收起

  • We propose a new class of filtered vector bundles, which is related to variation of (mixed) Hodge structures and give a slight generalization of the Fujita--Zucker--Kawamata semipositivity theorem.

    发表评论 查看更多 翻译此文

    收起

  • In this work, an accurate regularization technique based on the Meyer wavelet method is developed to solve the ill-posed backward heat conduction problem with time-dependent thermal diffusivity factor in an infinite "strip". In principle, the extremely ill-posedness of the considered problem is caused by the amplified infinitely growth in the frequency components which lead to a blow-up in the representation of the solution. Using the Meyer wavelet technique, some new stable estimates are proposed in the H\"older and Logarithmic types which are optimal in the sense of given by Tautenhahn. The stability and convergence rate of the proposed regularization technique are proved. The good performance and the high-accuracy of this technique is demonstrated through various one and two dimensional examples. Numerical simulations and some comparative results are presented.

    发表评论 查看更多 翻译此文

    收起

  • In this paper, we obtain a non-abelian analogue of Lubkin's embedding theorem for abelian categories. Our theorem faithfully embeds any small regular Mal'tsev category $\mathbb{C}$ in an $n$-th power of a particular locally finitely presentable regular Mal'tsev category. The embedding preserves and reflects finite limits, isomorphisms and regular epimorphisms, as in the case of Barr's embedding theorem for regular categories. Furthermore, we show that we can take $n$ to be the (cardinal) number of subobjects of the terminal object in $\mathbb{C}$.

    发表评论 查看更多 翻译此文

    收起

  • A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension $d$, and for arbitrary values of the lattice coordination number $Z$, are shown and discussed. As a function of these two parameters (and their ratio $Z/d$), the most studied models in random matrix theory (Erdos-Renyi graphs, effective medium, replicas) can be reproduced in the various limits of block dimensionality $d$. Remarkably, the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is reproduced exactly in the limit of infinite size of the blocks, or $d\rightarrow\infty$, which for the first time clarifies the physical meaning of space dimension in these models. The approximate results for $d=3$ provided by our method have

    发表评论 查看更多 翻译此文

    收起

  • Published in 1999, Christodoulou proved that the naked singularities of a self-gravitating scalar field are not stable in spherical symmetry and therefore the cosmic censorship conjecture is true in this context. The original proof is by contradiction and sharp estimates are obtained strictly depending on spherical symmetry. In this paper, appropriate a priori estimates for the solution are obtained. These estimates are more relaxed but sufficient for giving another robust argument in proving the instability, in particular not by contradiction. In another related paper, we are able to prove instability theorems of the spherical symmetric naked singularities under certain isotropic gravitational perturbations without symmetries. The argument given in this paper plays a central role.

    发表评论 查看更多 翻译此文

    收起

  • Following the techniques of [4], we formulate a Normal Form Lemma suited to close to be integrable Hamiltonian systems where not all the coordinates are action angles. The Lemma turns to be useful in the theory of KAM tori of Sun-Earth-Asteroids systems.

    发表评论 查看更多 翻译此文

    收起

  • We generalize the notion of self-similar groups of infinite tree automorphisms to allow for groups which are defined on a tree but do not act faithfully on it. The elements of such a group correspond to labeled trees which may be recognized by a tree automaton (e.g. Rabin, B\"{u}chi, etc.), or considered as elements of a tree shift (e.g. of finite type, sofic) as in symbolic dynamics. We give examples to show that the various classes of self-similar groups defined in this way do not coincide. As the main result, extending the classical result of Kitchens on one-dimensional group shifts, we provide a sufficient condition for a self-similar group whose elements form a sofic tree shift to be a tree shift of finite type. As an application, we show that the closure of certain self-similar groups of tree automorphisms are not Rabin-recognizable. \end{abstract}

    发表评论 查看更多 翻译此文

    收起

  • This paper presents a Laguerre homotopy method for optimal control problems in semi-infinite intervals (LaHOC), with particular interests given to nonlinear interconnected large-scale dynamic systems. In LaHOC, spectral homotopy analysis method is used to derive an iterative solver for the nonlinear two-point boundary value problem derived from Pontryagins maximum principle. A proof of local convergence of the LaHOC is provided. Numerical comparisons are made between the LaHOC, Matlab BVP5C generated results and results from literature for two nonlinear optimal control problems. The results show that LaHOC is superior in both accuracy and efficiency.

    发表评论 查看更多 翻译此文

    收起

  • A radial probability measure is a probability measure with a density (with respect to the Lebesgue measure) which depends only on the distances to the origin. Consider the Euclidean space enhanced with a radial probability measure. A correlation problem concerns showing whether the radial measure of the intersection of two symmetric convex bodies is greater than the product of the radial measures of the two convex bodies. A radial measure satisfying this property is said to satisfy the correlation property. A major question in this field is about the correlation property of the (standard) Gaussian measure. The main result in this paper is a theorem suggesting a sufficient condition for a radial measure to satisfy the correlation property. A consequence of the main theorem will be a proof of the correlation property of the Gaussian measure.

    发表评论 查看更多 翻译此文

    收起

  • Throughout, let $R$ be a commutative Noetherian ring. A ring $R$ satisfies Serre's condition $(S_{\ell})$ if for all $P \in \textrm{ Spec }R,$ $\textrm{ depth } R_P \geq \min \{ \ell , \dim R_P \}$. Serre's condition has been a topic of expanding interest. In this paper, we examine a generalization of Serre's condition $(S_{\ell}^j)$. We say a ring satisfies $(S_{\ell}^j)$ when $\textrm{ depth } R_P \geq \min \{ \ell , \dim R_P -j \}$ for all $P \in \textrm{ Spec }R$. We prove generalizations of results for rings satisfying Serre's condition.

    发表评论 查看更多 翻译此文

    收起

  • In this paper, we prove a theorem that gives a simple criterion for generating commuting pairs of generalized almost complex structures on spaces that are the product of two generalized almost contact metric spaces. We examine the implications of this theorem with regard to the definition of generalized Sasakian and generalized coK\"ahler geometry.

    发表评论 查看更多 翻译此文

    收起

  • As more attention is paid to security in the context of control systems and as attacks occur to real control systems throughout the world, it has become clear that some of the most nefarious attacks are those that evade detection. The term stealthy has come to encompass a variety of techniques that attackers can employ to avoid detection. Here we show how the states of the system (in particular, the reachable set corresponding to the attack) can be manipulated under two important types of stealthy attacks. We employ the chi-squared fault detection method and demonstrate how this imposes a constraint on the attack sequence either to generate no alarms (zero-alarm attack) or to generate alarms at a rate indistinguishable from normal operation (hidden attack).

    发表评论 查看更多 翻译此文

    收起

  • The El Ni\~no-Southern Oscillation (ENSO) is a mode of interannual variability in the coupled equatorial Pacific coupled atmosphere/ocean system. El Ni\~no describes a state in which sea surface temperatures in the eastern Pacific increase and upwelling of colder, deep waters diminishes. El Ni\~no events typically peak in boreal winter, but their strength varies irregularly on decadal time scales. There were exceptionally strong El Ni\~no events in 1982-83, 1997-98 and 2015-16 that affected weather on a global scale. Widely publicized forecasts in 2014 predicted that the 2015-16 event would occur a year earlier. Predicting the strength of El Ni\~no is a matter of practical concern due to its effects on hydroclimate and agriculture around the world. This paper discusses the frequency and regularity of strong El Ni\~no events in the context of chaotic dynamical systems. We discover a mechanism that limits their predictability in a conceptual "recharge oscillator" model of ENSO. Weak seas

    发表评论 查看更多 翻译此文

    收起

  • In this paper, we introduce and investigate a novel class of analytic and univalent functions of negative coefficients in the open unit disk. For this function class, we obtain characterization and distortion theorems as well as the radii of close-to-convexity, starlikeness and convexity by using fractional calculus techniques.

    发表评论 查看更多 翻译此文

    收起

  • Given a triangulation of a point set in the plane, a \emph{flip} deletes an edge $e$ whose removal leaves a convex quadrilateral, and replaces $e$ by the opposite diagonal of the quadrilateral. It is well known that any triangulation of a point set can be reconfigured to any other triangulation by some sequence of flips. We explore this question in the setting where each edge of a triangulation has a label, and a flip transfers the label of the removed edge to the new edge. It is not true that every labelled triangulation of a point set can be reconfigured to every other labelled triangulation via a sequence of flips. We characterize when this is possible by proving the \emph{Orbit Conjecture} of Bose, Lubiw, Pathak and Verdonschot which states that \emph{all} labels can be simultaneously mapped to their destination if and only if \emph{each} label individually can be mapped to its destination. Furthermore, we give a polynomial-time algorithm to find a sequence of flips to reconfigure

    发表评论 查看更多 翻译此文

    收起

  • We construct a countably infinite simple rank $3$ matroid $M_*$ which $\wedge$-embeds every finite simple rank $3$ matroid, and such that every isomorphism between finite $\wedge$-subgeometries of $M_*$ extends to an automorphism of $M_*$. We prove that $M_*$ is not $\aleph_0$-categorical, it has the independence property, it admits a stationary independence relation, and that $Aut(M_*)$ embeds the symmetric group $Sym(\omega)$. Finally, we use the free projective extension of $M_*$ to conclude the existence of a countably infinite projective plane embedding all the finite simple rank $3$ matroids and whose automorphism group contains $Sym(\omega)$.

    发表评论 查看更多 翻译此文

    收起

  • We sharpen an estimate of Bourgain, Brezis, and Nguyen for the topological degree of continuous maps from a sphere $\mathbb{S}^d$ into itself in the case $d \ge 2$. This provides the answer for $d \ge 2$ to a question raised by Brezis. The problem is still open for $d=1$.

    发表评论 查看更多 翻译此文

    收起

  • We deal with hypersurfaces in the framework of the relative differential geometry in $\mathbb{R}^4$. We consider a hypersurface $\varPhi$ in $\mathbb{R}^4$ with position vector field $\vect{x}$ which is relatively normalized by a relative normalization $\vect{y}$. Then $\vect{y}$ is also a relative normalization of every member of the one-parameter family $\mathcal{F}$ of hypersurfaces $\varPhi_\mu$ with position vector field $\vect{x}_\mu = \vect{x} + \mu \, \vect{y}$, where $\mu$ is a real constant. We call every hypersurface $\varPhi_\mu \in \mathcal{F}$ relatively parallel to $\varPhi$. This consideration includes both Euclidean and Blaschke hypersurfaces of the affine differential geometry. In this paper we express the relative mean curvature's functions of a hypersurface $\varPhi_\mu$ relatively parallel to $\varPhi$ by means of the ones of $\varPhi$ and the "relative distance" $\mu$. Then we prove several Bonnet's type theorems. More precisely, we show that if two relative mean

    发表评论 查看更多 翻译此文

    收起

  • Cao & Yuan obtained a Blichfeldt-type result for the vertex set of the edge-to-edge tiling of the plane by regular hexagons. Observing that every Archimedean tiling is the union of translates of a fixed lattice, we take a more general viewpoint and investigate basic questions for such point sets about the homogeneous and inhomogeneous problem in the Geometry of Numbers. The Archimedean tilings nicely exemplify our results.

    发表评论 查看更多 翻译此文

    收起

  • We consider a saddle point formulation for a sixth order partial differential equation and its finite element approximation, for two sets of boundary conditions. We follow the Ciarlet-Raviart formulation for the biharmonic problem to formulate our saddle point problem and the finite element method. The new formulation allows us to use the $H^1$-conforming Lagrange finite element spaces to approximate the solution. We prove a priori error estimates for our approach. Numerical results are presented for linear and quadratic finite element methods.

    发表评论 查看更多 翻译此文

    收起

  • An example of a graph that admits balanced fractional revival between antipodes is presented. It is obtained by establishing the correspondence between the quantum walk on a hypercube where the opposite vertices across the diagonals of each face are connected and, the coherent transport of single excitations in the extension of the Krawtchouk spin chain with next-to-nearest neighbour interactions.

    发表评论 查看更多 翻译此文

    收起

  • In this paper we address a $n+1$-body gravitational problem governed by the Newton's laws, where $n$ primary bodies orbit on a plane $\Pi$ and an additional massless particle moves on the perpendicular line to $\Pi$ passing through the center of mass of the primary bodies. We find a condition for that the configuration described be possible. In the case that the primaries are in a rigid motion we classify all the motions of the massless particle. We study the situation when the massless particle has a periodic motion with the same minimal period than primary bodies. We show that this fact is related with the existence of certain pyramidal central configuration.

    发表评论 查看更多 翻译此文

    收起

  • We construct a class of non-commutative, non-cocommutative, semisimple Hopf algebras of dimension $2n^2$ and present conditions to define an inner faithful action of these Hopf algebras on quantum polynomial algebras, providing, in this way, more examples of semisimple Hopf actions which do not factor through group actions. Also, under certain condition, we classify the inner faithful Hopf actions of the Kac-Paljutkin Hopf algebra of dimension $8$, $H_8$, on the quantum plane.

    发表评论 查看更多 翻译此文

    收起

  • We study a concept of inner function suited to Dirichlet-type spaces. We characterize such functions as those for which both the space and multiplier norms are equal to 1.

    发表评论 查看更多 翻译此文

    收起

  • We construct q-hypergeometric solutions of the equivariant quantum differential equations of the cotangent bundle of a partial flag variety. These q-hypergeometric solutions manifest a Landau-Ginzburg mirror symmetry for the cotangent bundle. We formulate and prove Pieri rules for quantum equivariant cohomology of the cotangent bundle.

    发表评论 查看更多 翻译此文

    收起

  • This paper presents a general theory and isogeometric finite element implementation of phase fields on deforming surfaces. The problem is governed by two coupled fourth order partial differential equations (PDEs) that live on an evolving manifold. For the phase field, the PDE is the Cahn-Hilliard equation for curved surfaces, which can be derived from surface mass balance. For the surface deformation, the PDE is the thin shell equation following from Kirchhoff-Love kinematics. Both PDEs can be efficiently discretized using $C^1$-continous interpolation free of derivative dofs (degrees-of-freedom) such as rotations. Structured NURBS and unstructured spline spaces with pointwise $C^1$-continuity are considered for this. The resulting finite element formulation is discretized in time by the generalized-$\alpha$ scheme with time-step size adaption, and it is fully linearized within a monolithic Newton-Raphson approach. A curvilinear surface parameterization is used throughout the formulati

    发表评论 查看更多 翻译此文

    收起

  • For a Cohen-Macaulay ideal of holomorphic functions, we construct by elementary means residue currents whose annihilator is precisely the given ideal. We give two proofs that the currents have the prescribed annihilator, one using the theory of linkage, and another using an explicit division formula involving these residue currents to express the ideal membership.

    发表评论 查看更多 翻译此文

    收起

  • For an arbitrary quiver Q and dimension vector d we prove that the dimension of the space of cuspidal functions on the moduli stack of representations of Q of dimension d over a finite field F_q is given by a polynomial in q. We define a variant of this polynomial counting absolutely cuspidal functions and conjecture that it has positive integral coefficients. In the case of totally negative quivers (such as the g-loop quiver for g >1) we provide a closed formula for these polynomials in terms of Kac polynomials.

    发表评论 查看更多 翻译此文

    收起

  • We construct an example of a bounded degree, nonamenable, unimodular random rooted graph with $p_c=p_u$ for Bernoulli bond percolation, as well as an example of a bounded degree, unimodular random rooted graph with $p_c<1$ but with an infinite cluster at criticality. These examples show that two well-known conjectures of Benjamini and Schramm are false when generalised from transitive graphs to unimodular random rooted graphs.

    发表评论 查看更多 翻译此文

    收起

  • Recent years have witnessed the success of employing convex relaxations of the AC optimal power flow (OPF) problem to find global or near-global optimal solutions. The majority of the effort has focused on solving problem formulations where variables live in continuous spaces. Our focus here is in the extension of these results to the cooptimization of network topology and the OPF problem. We employ binary variables to model topology reconfiguration in the standard semidefinite programming (SDP) formulation of the OPF problem. This makes the problem non-convex, not only because the variables are binary, but also because of the presence of bilinear products between the binary and other continuous variables. Our proposed convex relaxation to this problem incorporates the bilinear terms in a novel way that improves over the commonly used McCormick approximation. We also address the exponential complexity associated with the discrete variables by partitioning the network graph in a way tha

    发表评论 查看更多 翻译此文

    收起

  • In this paper, we introduce a model describing the dynamic of vesicle membranes within an incompressible viscous fluid in $3D$ domains. The system consists of the Navier-Stokes equations, with an extra stress tensor depending on the membrane, coupled with a Cahn-Hilliard phase-field equation associated to a bending energy plus a penalization term related to the area conservation. This problem has a dissipative in time free-energy which leads, in particular, to prove the existence of global in time weak solutions. We analyze the large-time behavior of the weak solutions. By using a modified Lojasiewicz-Simon's result, we prove the convergence as time goes to infinity of each (whole) trajectory to a single equilibrium. Finally, the convergence of the trajectory of the phase is improved by imposing more regularity on the domain and initial phase.

    发表评论 查看更多 翻译此文

    收起

  • Given a control system on a manifold that is embedded in Euclidean space, it is sometimes convenient to use a single global coordinate system in the ambient Euclidean space for controller design rather than to use multiple local charts on the manifold or coordinate-free tools from differential geometry. In this paper, we develop a theory about this and apply it to the fully actuated rigid body system for stabilization and tracking. A noteworthy point in this theory is that we legitimately modify the system dynamics outside its state-space manifold before controller design so as to add attractiveness to the manifold in the resulting dynamics.

    发表评论 查看更多 翻译此文

    收起

  • We consider ferromagnetic Dyson models which display phase transitions. They are long-range one-dimensional Ising ferromagnets, in which the interaction is given by $J_{x,y} = J(|x-y|)\equiv \frac{1}{|x-y|^{2-\alpha}}$ with $\alpha \in [0, 1)$, in particular, $J(1)=1$. For this class of models one way in which one can prove the phase transition is via a kind of Peierls contour argument, using the adaptation of the Fr\"ohlich-Spencer contours for $\alpha \neq 0$, proposed by Cassandro, Ferrari, Merola and Presutti. As proved by Fr\"ohlich and Spencer for $\alpha=0$ and conjectured by Cassandro et al for the region they could treat, $\alpha \in (0,\alpha_{+})$ for $\alpha_+=\log(3)/\log(2)-1$, although in the literature dealing with contour methods for these models it is generally assumed that $J(1)\gg1$, we can show that this condition can be removed in the contour analysis. In addition, combining our theorem with a recent result of Littin and Picco we prove the persistence of the conto

    发表评论 查看更多 翻译此文

    收起

  • We continue our systematic search for symmetric Hadamard matrices based on the so called propus construction. In a previous paper this search covered the orders $4v$ with odd $v\le41$. In this paper we cover the cases $v=43,45,47,49,51$. The odd integers $v<120$ for which no symmetric Hadamard matrices of order $4v$ are known are the following: $$47,59,65,67,73,81,89,93,101,103,107,109,113,119.$$ By using the propus construction, we found several symmetric Hadamard matrices of order $4v$ for $v=47,73,113$.

    发表评论 查看更多 翻译此文

    收起

  • For LTI control systems, we provide mathematical tools - in terms of Linear Matrix Inequalities - for computing outer ellipsoidal bounds on the reachable sets that attacks can induce in the system when they are subject to the physical limits of the actuators. Next, for a given set of dangerous states, states that (if reached) compromise the integrity or safe operation of the system, we provide tools for designing new artificial limits on the actuators (smaller than their physical bounds) such that the new ellipsoidal bounds (and thus the new reachable sets) are as large as possible (in terms of volume) while guaranteeing that the dangerous states are not reachable. This guarantees that the new bounds cut as little as possible from the original reachable set to minimize the loss of system performance. Computer simulations using a platoon of vehicles are presented to illustrate the performance of our tools.

    发表评论 查看更多 翻译此文

    收起

  • Nonlinear generalizations of integrable equations in one dimension, such as the KdV and Boussinesq equations with $p$-power nonlinearities, arise in many physical applications and are interesting in analysis due to critical behaviour. This paper studies analogous nonlinear $p$-power generalizations of the integrable KP equation and the Boussinesq equation in two dimensions. Several results are obtained. First, for all $p\neq 0$, a Hamiltonian formulation of both generalized equations is given. Second, all Lie symmetries are derived, including any that exist for special powers $p\neq0$. Third, Noether's theorem is applied to obtain the conservation laws arising from the Lie symmetries that are variational. Finally, explicit line soliton solutions are derived for all powers $p>0$, and some of their properties are discussed.

    发表评论 查看更多 翻译此文

    收起

  • Given a simple Lie group $H$ of real rank at least $2$ we show that the maximum cardinality of a set of isospectral non-isometric $H$-locally symmetric spaces of volume at most $x$ grows at least as fast as $x^{c\log x/ (\log\log x)^2}$ where $c = c(H)$ is a positive constant. In contrast with the real rank $1$ case, this bound comes surprisingly close to the total number of such spaces as estimated in a previous work of Belolipetsky and Lubotzky [BL]. Our proof uses Sunada's method, results of [BL], and some deep results from number theory. We also discuss an open number-theoretical problem which would imply an even faster growth estimate.

    发表评论 查看更多 翻译此文

    收起

  • The bounded cohomology $H^n_b(F, \mathbb{R})$ of a non-abelian free group $F$ has uncountable dimension for $n=2,3$ but it is unkown for $n \geq 4$. The aim of this paper is to show that the cup product between many known bounded $2$-cocycles does not yield non-trivial classes in degree $4$. Those classes include the counting quasimorphisms of Brooks.

    发表评论 查看更多 翻译此文

    收起

  • The nearby space surrounding the Earth is densely populated by artificial satellites and instruments, whose orbits are distributed within the Low-Earth-Orbit region (LEO), ranging between 90 and 2 000 $km$ of altitude. As a consequence of collisions and fragmentations, many space debris of different sizes are left in the LEO region. Given the threat raised by the possible damages which a collision of debris can provoke with operational or manned satellites, the study of their dynamics is nowadays mandatory. This work is focused on the existence of equilibria and the dynamics of resonances in LEO. We base our results on a simplified model which includes the geopotential and the atmospheric drag. Using such model, we make a qualitative study of the resonances and the equilibrium positions, including their location and stability. The dissipative effect due to the atmosphere provokes a tidal decay, but we give examples of different behaviors, precisely a straightforward passage through the

    发表评论 查看更多 翻译此文

    收起

  • The widespread application of wireless services and dense devices access have triggered huge energy consumption. Because of the environmental and financial considerations, energy-efficient design in wireless networks becomes an inevitable trend. To the best of the authors' knowledge, energy-efficient orthogonal frequency division multiple access heterogeneous small cell optimization comprehensively considering energy efficiency maximization, power allocation, wireless backhaul bandwidth allocation, and user Quality of Service is a novel approach and research direction, and it has not been investigated. In this paper, we study the energy-efficient power allocation and wireless backhaul bandwidth allocation in orthogonal frequency division multiple access heterogeneous small cell networks. Different from the existing resource allocation schemes that maximize the throughput, the studied scheme maximizes energy efficiency by allocating both transmit power of each small cell base station to

    发表评论 查看更多 翻译此文

    收起

  • We present non-overlapping Domain Decomposition Methods (DDM) based on quasi-optimal transmission operators for the solution of Helmholtz transmission problems with piece-wise constant material properties. The quasi-optimal transmission boundary conditions incorporate readily available approximations of Dirichlet-to-Neumann operators. These approximations consist of either complexified hypersingular boundary integral operators for the Helmholtz equation or square root Fourier multipliers with complex wavenumbers. We show that under certain regularity assumptions on the closed interface of material discontinuity, the DDM with quasi-optimal transmission conditions are well-posed. We present a DDM framework based on Robin-to-Robin (RtR) operators that can be computed robustly via boundary integral formulations. More importantly, the use of quasi-optimal transmission operators results in DDM that converge in small numbers of iterations even in the challenging high-contrast, high-frequency

    发表评论 查看更多 翻译此文

    收起

  • We introduce and study a dimensional-like characteristic of an uniformly almost periodic function, which we call the Diophantine dimension. By definition, it is the exponent in the asymptotic behavior of the inclusio length. Diophantine dimension is connected with recurrent and ergodic properties of an almost periodic function. We get some estimates of the Diophantine dimension for certain quasiperiodic functions and present methods to investigate such a characteristic for almost periodic trajectories of evolution equations. Also we discuss the link between the presented approach and the so called effective versions of the Kronecker theorem.

    发表评论 查看更多 翻译此文

    收起