## Expected number of real zeros of random Taylor Series. (arXiv:1709.02937v1 [math.PR])

Let $\xi_0,\xi_1,\ldots$ be i.i.d. random variables with zero mean and unit variance. Consider a random Taylor series of the form $f(z)=\sum_{k=0}^\infty \xi_k c_k z^k$, where $c_0,c_1,\ldots$ is a real sequence such that $c_n^2$ is regularly varying with index $\gamma-1$, where $\gamma&gt;0$. We prove that $\mathbb{E} N[0,1-\epsilon] \sim \frac{\sqrt{\gamma}}{2\pi} |\log \epsilon|$ as $\epsilon \downarrow 0$, where $N[0,r]$ denotes the number of real zeroes of $f$ in the interval $[0,r]$.查看全文

## Solidot 文章翻译

 你的名字 留空匿名提交 你的Email或网站 用户可以联系你 标题 简单描述 内容 Let $\xi_0,\xi_1,\ldots$ be i.i.d. random variables with zero mean and unit variance. Consider a random Taylor series of the form $f(z)=\sum_{k=0}^\infty \xi_k c_k z^k$, where $c_0,c_1,\ldots$ is a real sequence such that $c_n^2$ is regularly varying with index $\gamma-1$, where $\gamma>0$. We prove that $\mathbb{E} N[0,1-\epsilon] \sim \frac{\sqrt{\gamma}}{2\pi} |\log \epsilon|$ as $\epsilon \downarrow 0$, where $N[0,r]$ denotes the number of real zeroes of $f$ in the interval $[0,r]$.