adv

Improved Encoding and Counting of Uniform Hypertrees. (arXiv:1711.03335v1 [math.CO])

We consider labeled $r$-uniform hypertrees having $n \ge r$ vertices. The number of hyperedges in such a hypertree is $m = (n - 1)/(r - 1)$. We show that there are exactly $f(n, r) = \frac{(n-1)! n^{m-1}}{m! (r-1)!^m}$ $r$-uniform hypertrees with $n$ labeled vertices.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容