A representation theorem for the $p^n$ torsion of the Brauer group in characteristic $p$. (arXiv:1711.00980v3 [math.RA] UPDATED)

If $K$ is a field of characteristic $p$ then the $p$-torsion of the Brauer group, ${}_p{\rm Br\,}(K)$, is represented by a quotient of the group of $1$-forms, $\Omega^1(K)$. Namely, we have a group isomorphism $$\alpha_p:\Omega^1(K)/\langle{\rm d}a,\, (a^p-a){\rm dlog}b\, :\, a,b\in K,\, b\neq 0\rangle\to{}_p{\rm Br\,}(K),$$ given by $a{\rm d}b\mapsto [ab,b)_p$ $\forall a,b\in K$, $b\neq 0$. Here $[\cdot,\cdot )_p:K/\wp (K)\times K^\times/K^{\times p}\to{}_p{\rm Br\,}(K)$ denotes the Artin-Schreier symbol. In this paper we generalize this result. Namely, we prove that for every $n\geq 1$ we have a representation of ${}_{p^n}{\rm Br\,}(K)$ by a quotient of $\Omega^1(W_n(K))$, where $W_n(K)$ is the truncation of length $n$ of the ring of $p$-typical Witt vectors, i.e. $W_{\{1,p,\ldots,p^{n-1}\}}(K)$. Explicitly, we have a group isomorphism $$\alpha_{p^n}:\Omega^1(W_{p^n}(K))/\langle Fa{\rm d}b-a{\rm d}Vb\, :\, a,b\in W_n(K),\, ([a^p]-[a]){\rm dlog}[b]\, :\, a,b\in K,\, b\neq 0\rangle\to{ 查看全文>>