adv

Biologically Plausible Online Principal Component Analysis Without Recurrent Neural Dynamics. (arXiv:1810.06966v1 [stat.CO])

来源于:arXiv
Artificial neural networks that learn to perform Principal Component Analysis (PCA) and related tasks using strictly local learning rules have been previously derived based on the principle of similarity matching: similar pairs of inputs should map to similar pairs of outputs. However, the operation of these networks (and of similar networks) requires a fixed-point iteration to determine the output corresponding to a given input, which means that dynamics must operate on a faster time scale than the variation of the input. Further, during these fast dynamics such networks typically "disable" learning, updating synaptic weights only once the fixed-point iteration has been resolved. Here, we derive a network for PCA-based dimensionality reduction that avoids this fast fixed-point iteration. The key novelty of our approach is a modification of the similarity matching objective to encourage near-diagonality of a synaptic weight matrix. We then approximately invert this matrix using a Taylo 查看全文>>