Fractional quantum numbers via complex orbifolds. (arXiv:1811.11748v1 [math.AG])

This paper studies both the conductance and charge transport on 2D orbifolds in a strong magnetic field. We consider a family of Landau Hamiltonians on a complex, compact 2D orbifold $Y$ that are parametrised by the Jacobian torus $J(Y)$ of $Y$. We calculate the degree of the associated stable holomorphic spectral orbibundles when the magnetic field $B$ is large, and obtain fractional quantum numbers as the conductance and a refined analysis also gives the charge transport. A key tool studied here is a nontrivial generalisation of the Nahm transform to 2D orbifolds. 查看全文>>