Divisors on the moduli space of curves from divisorial conditions on hypersurfaces. (arXiv:1901.11154v1 [math.AG])

In this note, we extend work of Farkas and Rim\'anyi on applying quadric rank loci to finding divisors of small slope on the moduli space of curves by instead considering all divisorial conditions on the hypersurfaces of a fixed degree containing a projective curve. This gives rise to a large family of virtual divisors on $\overline{\mathcal{M}_g}$. We determine explicitly which of these divisors are candidate counterexamples to the Slope Conjecture. The potential counterexamples exist on $\overline{\mathcal{M}_g}$, where the set of possible values of $g\in \{1,\ldots,N\}$ has density $\Omega(\log(N)^{-0.087})$ for $N>>0$. Furthermore, no divisorial condition defined using hypersurfaces of degree greater than 2 give counterexamples to the Slope Conjecture, and every divisor in our family has slope at least $6+\frac{8}{g+1}$. 查看全文>>