Dilation-commuting operators on power-weighted Orlicz classes. (arXiv:1708.01478v1 [math.FA])

Let $\Phi_1$ and $\Phi_2$ be nondecreasing functions from $\mathbb{R_+}=(0,\infty)$ onto itself. For $i=1,2$ and $\gamma \in \mathbb{R}$, define the Orlicz class $L_{\Phi_{i}}(\mathbb{R_+})$ to be the set of Lebesgue-measurable functions $f$ on $\mathbb{R_+}$ such that \begin{equation*} \int_{\mathbb{R_+}} \Phi_{i} \left( k|(Tf)(t)| \right) t^{\gamma}dt < \infty \end{equation*} for some $k>0$. Our goal in this paper is to find conditions on $\Phi_1$, $\Phi_2$, $\gamma$ and an operator $T$ so that the assertions \begin{equation} T : L_{\Phi_2,t^{\gamma}}(\mathbb{R_+}) \rightarrow L_{\Phi_1,t^{\gamma}}(\mathbb{R_+}), \tag{I} \end{equation} and \begin{equation}\label{modularA} \int_{\mathbb{R_+}} \Phi_1 \left( |(Tf)(t)| \right)t^{\gamma}dt \leq K \int_{\mathbb{R_+}} \Phi_2 \left( K|f(s)| \right)s^{\gamma}ds, \tag{M} \end{equation} in which $K>0$ is independent of $f$, say, simple on $\mathbb{R_+}$, are equivalent and to then find necessary and sufficient conditions in order that 查看全文>>