Klein-Gordonization. (arXiv:1711.03297v1 [hep-th])

We describe a procedure naturally associating relativistic Klein-Gordon equations in static curved spacetimes to non-relativistic quantum motion on curved spaces in the presence of a potential. Our procedure is particularly attractive in application to (typically, superintegrable) problems whose energy spectrum is given by a quadratic function of the energy level number, since for such systems the spacetimes one obtains possess evenly spaced, resonant spectra of frequencies for scalar fields of a certain mass. This construction emerges as a generalization of the previously studied correspondence between the Higgs oscillator and Anti-de Sitter spacetime, which has been useful for both understanding weakly nonlinear dynamics in Anti-de Sitter spacetime and algebras of conserved quantities of the Higgs oscillator. Our conversion procedure ("Klein-Gordonization") reduces to a nonlinear elliptic equation closely reminiscent of the one emerging in relation to the celebrated Yamabe problem of 查看全文>>