adv

Optimal Weak Parallelogram Constants for $L^p$ Spaces. (arXiv:1802.04649v1 [math.FA])

来源于:arXiv
Inspired by Clarkson's inequalities for $L^p$ and continuing work from \cite{CR}, this paper computes the optimal constant $C$ in the weak parallelogram laws $$ \|f + g \|^r + C\|f - g\|^r \leq 2^{r-1}\big( \|f\|^r + \|g\|^r \big), $$ $$ \|f + g \|^r + C\|f- g \|^r \geq 2^{r-1}\big( \|f\|^r + \|g \|^r \big)$$ for the $L^p$ spaces, $1 < p < \infty$. 查看全文>>

发表评论