adv

Equidistribution and counting of orbit points for discrete rank one isometry groups of Hadamard spaces. (arXiv:1808.03223v1 [math.GR])

Let $X$ be a proper, geodesically complete Hadamard space, and $\ \Gamma<\mbox{Is}(X)$ a discrete subgroup of isometries of $X$ with the fixed point of a rank one isometry of $X$ in its infinite limit set. In this paper we prove that if $\Gamma$ has non-arithmetic length spectrum, then the Ricks' Bowen-Margulis measure -- which generalizes the well-known Bowen-Margulis measure in the CAT$(-1)$ setting -- is mixing. If in addition the Ricks' Bowen-Margulis measure is finite, then we also have equidistribution of $\Gamma$-orbit points in $X$, which in particular yields an asymptotic estimate for the orbit counting function of $\Gamma$. This generalizes well-known facts for non-elementary discrete isometry groups of Hadamard manifolds with pinched negative curvature and proper CAT$(-1)$-spaces.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容