    Analysis of variable-step/non-autonomous artificial compression methods. (arXiv:1809.04650v1 [math.NA])

A standard artificial compression (AC) method for incompressible flow is $$\frac{u_{n+1}^{\varepsilon }-u_{n}^{\varepsilon }}{k}+u_{n+1}^{\varepsilon }\cdot \nabla u_{n+1}^{\varepsilon }+{\frac{1}{2}}u_{n+1}^{\varepsilon }\nabla \cdot u_{n+1}^{\varepsilon }+\nabla p_{n+1}^{\varepsilon }-\nu \Delta u_{n+1}^{\varepsilon }=f\text{ ,} \\ \varepsilon \frac{p_{n+1}^{\varepsilon }-p_{n}^{\varepsilon }}{k} +\nabla \cdot u_{n+1}^{\varepsilon }=0$$ for, typically, $\varepsilon =k$ (timestep). It is fast, efficient and stable with accuracy $O(\varepsilon +k)$. For adaptive (and thus variable) timestep $k_{n}$ (and thus $\varepsilon =\varepsilon _{n}$) its long time stability is unknown. For variable $k,\varepsilon$ this report shows how to adapt a standard AC method to recover a provably stable method. For the associated continuum AC model, we prove convergence of the $\varepsilon =\varepsilon (t)$\ artificial compression model to a weak solution of the incompressible Navier-Stokes equations a查看全文

Solidot 文章翻译

 你的名字 留空匿名提交 你的Email或网站 用户可以联系你 标题 简单描述 内容 A standard artificial compression (AC) method for incompressible flow is $$\frac{u_{n+1}^{\varepsilon }-u_{n}^{\varepsilon }}{k}+u_{n+1}^{\varepsilon }\cdot \nabla u_{n+1}^{\varepsilon }+{\frac{1}{2}}u_{n+1}^{\varepsilon }\nabla \cdot u_{n+1}^{\varepsilon }+\nabla p_{n+1}^{\varepsilon }-\nu \Delta u_{n+1}^{\varepsilon }=f\text{ ,} \\ \varepsilon \frac{p_{n+1}^{\varepsilon }-p_{n}^{\varepsilon }}{k} +\nabla \cdot u_{n+1}^{\varepsilon }=0$$ for, typically, $\varepsilon =k$ (timestep). It is fast, efficient and stable with accuracy $O(\varepsilon +k)$. For adaptive (and thus variable) timestep $k_{n}$ (and thus $\varepsilon =\varepsilon _{n}$) its long time stability is unknown. For variable $k,\varepsilon$ this report shows how to adapt a standard AC method to recover a provably stable method. For the associated continuum AC model, we prove convergence of the $\varepsilon =\varepsilon (t)$\ artificial compression model to a weak solution of the incompressible Navier-Stokes equations a