adv

Codimension growth of solvable Lie superalgebras. (arXiv:1810.04400v1 [math.RA])

We study numerical invariants of identities of finite-dimensional solvable Lie superalgebras. We define new series of finite-dimensional solvable Lie superalgebras $L$ with non-nilpotent derived subalgebra $L'$ and discuss their codimension growth. For the first algebra of this series we prove the existence and integrality of $exp(L)$.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容