Categorical primitive forms and Gromov-Witten invariants of $A_n$ singularities. (arXiv:1810.05179v1 [math.AG])

We introduce a categorical analogue of Saito's notion of primitive forms. Let $W$ denote the potential $\frac{1}{n+1} x^{n+1}$. For the category $MF(W)$ of matrix factorizations of $W$ we prove that there exists a unique, up to non-zero constant, categorical primitive form. The corresponding genus zero categorical Gromov-Witten invariants of $MF(W)$ are shown to match with the invariants defined through unfolding of singularities of $W$.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容