Geometry of intersections of some secant varieties to algebraic curves. (arXiv:1810.05461v1 [math.AG])

For a smooth projective curve, the cycles of subordinate or, more generally, secant divisors to a given linear series are among some of the most studied objects in classical enumerative geometry. We consider the intersection of two such cycles corresponding to secant divisors of two different linear series on the same curve and investigate the validity of the enumerative formulas counting the number of divisors in the intersection. We study some interesting cases, with unexpected transversality properties, and establish a general method to verify when this intersection is empty.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容