adv

A Support Characterization for Functions Defined on $\Bbb S^{n}$ with Vanishing Integrals on Subspheres Arising from Axially Symmetric Surfaces. (arXiv:1810.06614v1 [math.AP])

Let $\Sigma$ be a closed, smooth hypersurface in $\Bbb R^{n + 1}$ which is axially symmetric and is contained inside the unit sphere $\Bbb S^{n}$. For a continuous function $f$, which is defined on $\Bbb S^{n}$, the main goal of this paper is to characterize the support of $f$ in case where its integrals vanish on subspheres obtained by intersecting $\Bbb S^{n}$ with the tangent hyperplanes of a certain subdomain $\mathcal{U}\subset\Sigma$ of $\Sigma$. We show that the support of $f$ can be characterized in case where its integrals also vanish on subspheres obtained by intersecting $\Bbb S^{n}$ with hyperplanes obtained by infinitesimal perturbations of the tangent hyperplanes of $\mathcal{U}$.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容