adv

A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks. (arXiv:1801.05375v2 [math-ph] UPDATED)

We show that elements of control theory, together with an application of Harris' ergodic theorem, provide an alternate method for showing exponential convergence to a unique stationary measure for certain classes of networks of quasi-harmonic classical oscillators coupled to heat baths. With the system of oscillators expressed in the form $\mathrm{d} X_t = A X_t \,\mathrm{d} t + F(X_t) \,\mathrm{d} t + B \,\mathrm{d} W_t$ in $\mathbf{R}^d$, where $A$ encodes the harmonic part of the force and $-F$ corresponds to the gradient of the anharmonic part of the potential, the hypotheses under which we obtain exponential mixing are the following: $A$ is dissipative, the pair $(A,B)$ satisfies the Kalman condition, $F$ grows sufficiently slowly at infinity (depending on the dimension $d$), and the vector fields in the equation of motion satisfy the weak H\"ormander condition in at least one point of the phase space.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容