adv

Biologically Plausible Online Principal Component Analysis Without Recurrent Neural Dynamics. (arXiv:1810.06966v1 [stat.CO])

Artificial neural networks that learn to perform Principal Component Analysis (PCA) and related tasks using strictly local learning rules have been previously derived based on the principle of similarity matching: similar pairs of inputs should map to similar pairs of outputs. However, the operation of these networks (and of similar networks) requires a fixed-point iteration to determine the output corresponding to a given input, which means that dynamics must operate on a faster time scale than the variation of the input. Further, during these fast dynamics such networks typically "disable" learning, updating synaptic weights only once the fixed-point iteration has been resolved. Here, we derive a network for PCA-based dimensionality reduction that avoids this fast fixed-point iteration. The key novelty of our approach is a modification of the similarity matching objective to encourage near-diagonality of a synaptic weight matrix. We then approximately invert this matrix using a Taylo查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容