adv

Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements. (arXiv:1803.04641v2 [math.NA] UPDATED)

This paper presents a modified quasi-reversibility method for computing the exponentially unstable solution of a nonlocal terminal-boundary value parabolic problem with noisy data. Based on data measurements, we perturb the problem by the so-called filter regularized operator to design an approximate problem. Different from recently developed approaches that consist in the conventional spectral methods, we analyze this new approximation in a variational framework, where the finite element method can be applied. To see the whole skeleton of this method, our main results lie in the analysis of a semi-linear case and we discuss some generalizations where this analysis can be adapted. As is omnipresent in many physical processes, there is likely a myriad of models derived from this simpler case, such as source localization problems for brain tumors and heat conduction problems with nonlinear sinks in nuclear science. With respect to each noise level, we benefit from the Faedo-Galerkin meth查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容