## Functions realising as abelian group automorphisms. (arXiv:1810.07533v1 [math.GR])

Let $A$ be a set and $f:A\rightarrow A$ a bijective function. Necessary and sufficient conditions on $f$ are determined which makes it possible to endow $A$ with a binary operation $*$ such that $(A,*)$ is a cyclic group and $f\in \mbox{Aut}(A)$. This result is extended to all abelian groups in case $|A|=p^2, \ p$ a prime. Finally, in case $A$ is countably infinite, those $f$ for which it is possible to turn $A$ into a group $(A,*)$ isomorphic to ${\Bbb Z}^n$ for some $n\ge 1$, and with $f\in \mbox{Aut} (A)$, are completely characterised.查看全文

## Solidot 文章翻译

 你的名字 留空匿名提交 你的Email或网站 用户可以联系你 标题 简单描述 内容 Let $A$ be a set and $f:A\rightarrow A$ a bijective function. Necessary and sufficient conditions on $f$ are determined which makes it possible to endow $A$ with a binary operation $*$ such that $(A,*)$ is a cyclic group and $f\in \mbox{Aut}(A)$. This result is extended to all abelian groups in case $|A|=p^2, \ p$ a prime. Finally, in case $A$ is countably infinite, those $f$ for which it is possible to turn $A$ into a group $(A,*)$ isomorphic to ${\Bbb Z}^n$ for some $n\ge 1$, and with $f\in \mbox{Aut} (A)$, are completely characterised.
﻿