Construction of LCS and LCK structures on Lie algebras and solvmanifolds. (arXiv:1811.12266v1 [math.DG])
We show a method to build new examples of Lie algebras admitting LCS or LCK
structures starting with a smaller dimensional Lie algebra endowed with a LCS
or LCK structure respectively, and a suitable representation. We also study the
existence of lattices in the associated simply connected Lie groups in order to
obtain compact examples of manifolds admitting these kind of structures.
Finally we show that the Lie algebra underlying of the well known
Oeljesklaus-Toma solvmanifold can me reobtained using our construction.查看全文