solidot新版网站常见问题,请点击这里查看。

From the Trinity $(A_3, B_3, H_3)$ to an ADE correspondence. (arXiv:1812.02804v1 [math-ph])

In this paper we present novel $ADE$ correspondences by combining an earlier induction theorem of ours with one of Arnold's observations concerning Trinities, and the McKay correspondence. We first extend Arnold's indirect link between the Trinity of symmetries of the Platonic solids $(A_3, B_3, H_3)$ and the Trinity of exceptional 4D root systems $(D_4, F_4, H_4)$ to an explicit Clifford algebraic construction linking the two ADE sets of root systems $(I_2(n), A_1\times I_2(n), A_3, B_3, H_3)$ and $(I_2(n), I_2(n)\times I_2(n), D_4, F_4, H_4)$. The latter are connected through the McKay correspondence with the ADE Lie algebras $(A_n, D_n, E_6, E_7, E_8)$. We show that there are also novel indirect as well as direct connections between these ADE root systems and the new ADE set of root systems $(I_2(n), A_1\times I_2(n), A_3, B_3, H_3)$, resulting in a web of three-way ADE correspondences between three ADE sets of root systems.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容