solidot新版网站常见问题，请点击这里查看。

## Don't Try This at Home: No-Go Theorems for Distributive Laws. (arXiv:1811.06460v2 [math.CT] UPDATED)

Beck's distributive laws provide sufficient conditions under which two monads can be composed, and monads arising from distributive laws have many desirable theoretical properties. Unfortunately, finding and verifying distributive laws, or establishing if one even exists, can be extremely difficult and error-prone. We develop general-purpose techniques for showing when there can be no distributive law between two monads. Two approaches are presented. The first widely generalizes ideas from a counterexample attributed to Plotkin, yielding general-purpose theorems that recover the previously known situations in which no distributive law can exist. Our second approach is entirely novel, encompassing new practical situations beyond our generalization of Plotkin's approach. It negatively resolves the open question of whether the list monad distributes over itself. Our approach adopts an algebraic perspective throughout, exploiting a syntactic characterization of distributive laws. This appr查看全文

## Solidot 文章翻译

 你的名字 留空匿名提交 你的Email或网站 用户可以联系你 标题 简单描述 内容 Beck's distributive laws provide sufficient conditions under which two monads can be composed, and monads arising from distributive laws have many desirable theoretical properties. Unfortunately, finding and verifying distributive laws, or establishing if one even exists, can be extremely difficult and error-prone. We develop general-purpose techniques for showing when there can be no distributive law between two monads. Two approaches are presented. The first widely generalizes ideas from a counterexample attributed to Plotkin, yielding general-purpose theorems that recover the previously known situations in which no distributive law can exist. Our second approach is entirely novel, encompassing new practical situations beyond our generalization of Plotkin's approach. It negatively resolves the open question of whether the list monad distributes over itself. Our approach adopts an algebraic perspective throughout, exploiting a syntactic characterization of distributive laws. This appr
﻿