solidot新版网站常见问题，请点击这里查看。

## Escaping orbits are rare in the quasi-periodic Littlewood boundedness problem. (arXiv:1812.08457v1 [math.DS])

We study the superlinear oscillator equation $\ddot{x}+ \lvert x \rvert^{\alpha-1}x = p(t)$ for $\alpha\geq 3$, where $p$ is a quasi-periodic forcing with no Diophantine condition on the frequencies and show that typically the set of initial values leading to solutions $x$ such that $\lim_{t\to\infty} (\lvert x(t) \rvert + \lvert \dot{x}(t) \rvert) = \infty$ has Lebesgue measure zero, provided the starting energy $\lvert x(t_0) \rvert + \lvert \dot{x}(t_0) \rvert$ is sufficiently large.查看全文

## Solidot 文章翻译

 你的名字 留空匿名提交 你的Email或网站 用户可以联系你 标题 简单描述 内容 We study the superlinear oscillator equation $\ddot{x}+ \lvert x \rvert^{\alpha-1}x = p(t)$ for $\alpha\geq 3$, where $p$ is a quasi-periodic forcing with no Diophantine condition on the frequencies and show that typically the set of initial values leading to solutions $x$ such that $\lim_{t\to\infty} (\lvert x(t) \rvert + \lvert \dot{x}(t) \rvert) = \infty$ has Lebesgue measure zero, provided the starting energy $\lvert x(t_0) \rvert + \lvert \dot{x}(t_0) \rvert$ is sufficiently large.
﻿