Deep Neural Network Approximation Theory. (arXiv:1901.02220v1 [cs.LG])

Deep neural networks have become state-of-the-art technology for a wide range of practical machine learning tasks such as image classification, handwritten digit recognition, speech recognition, or game intelligence. This paper develops the fundamental limits of learning in deep neural networks by characterizing what is possible if no constraints on the learning algorithm and the amount of training data are imposed. Concretely, we consider information-theoretically optimal approximation through deep neural networks with the guiding theme being a relation between the complexity of the function (class) to be approximated and the complexity of the approximating network in terms of connectivity and memory requirements for storing the network topology and the associated quantized weights. The theory we develop educes remarkable universality properties of deep networks. Specifically, deep networks are optimal approximants for vastly different function classes such as affine systems and Gabor查看全文

Solidot 文章翻译