adv

A splitting lemma for coherent sheaves. (arXiv:1901.11393v1 [math.CV])

The presented splitting lemma extends the techniques of Gromov and Forstneri\v{c} to glue local sections of a given analytic sheaf, a key step in the proof of all Oka principles. The novelty on which the proof depends is a lifting lemma for transition maps of coherent sheaves, which yields a reduction of the proof to the work of Forstneri\v{c}. As applications we get shortcuts in the proofs of Forster and Ramspott's Oka principle for admissible pairs and of the interpolation property of sections of elliptic submersions, an extension of Gromov's results obtained by Forstneri\v{c} and Prezelj.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容