solidot新版网站常见问题，请点击这里查看。

## Determining the Dimension and Structure of the Subspace Correlated Across Multiple Data Sets. (arXiv:1901.11366v1 [cs.IT])

Detecting the components common or correlated across multiple data sets is challenging due to a large number of possible correlation structures among the components. Even more challenging is to determine the precise structure of these correlations. Traditional work has focused on determining only the model order, i.e., the dimension of the correlated subspace, a number that depends on how the model-order problem is defined. Moreover, identifying the model order is often not enough to understand the relationship among the components in different data sets. We aim at solving the complete modelselection problem, i.e., determining which components are correlated across which data sets. We prove that the eigenvalues and eigenvectors of the normalized covariance matrix of the composite data vector, under certain conditions, completely characterize the underlying correlation structure. We use these results to solve the model-selection problem by employing bootstrap-based hypothesis testing.查看全文

## Solidot 文章翻译

 你的名字 留空匿名提交 你的Email或网站 用户可以联系你 标题 简单描述 内容 Detecting the components common or correlated across multiple data sets is challenging due to a large number of possible correlation structures among the components. Even more challenging is to determine the precise structure of these correlations. Traditional work has focused on determining only the model order, i.e., the dimension of the correlated subspace, a number that depends on how the model-order problem is defined. Moreover, identifying the model order is often not enough to understand the relationship among the components in different data sets. We aim at solving the complete modelselection problem, i.e., determining which components are correlated across which data sets. We prove that the eigenvalues and eigenvectors of the normalized covariance matrix of the composite data vector, under certain conditions, completely characterize the underlying correlation structure. We use these results to solve the model-selection problem by employing bootstrap-based hypothesis testing.
﻿