## Existence, multiplicity and concentration for a class of fractional $p\&q$ Laplacian problems in $\mathbb{R}^{N}$. (arXiv:1901.11016v1 [math.AP])

In this work we consider the following class of fractional $p\&amp;q$ Laplacian problems \begin{equation*} (-\Delta)_{p}^{s}u+ (-\Delta)_{q}^{s}u + V(\varepsilon x) (|u|^{p-2}u + |u|^{q-2}u)= f(u) \mbox{ in } \mathbb{R}^{N}, \end{equation*} where $\varepsilon&gt;0$ is a parameter, $s\in (0, 1)$, $1&lt; p&lt;q&lt;\frac{N}{s}$, $(-\Delta)^{s}_{t}$, with $t\in \{p,q\}$, is the fractional $t$-Laplacian operator, $V:\mathbb{R}^{N}\rightarrow \mathbb{R}$ is a continuous potential and $f:\mathbb{R}\rightarrow \mathbb{R}$ is a $\mathcal{C}^{1}$-function with subcritical growth. Applying minimax theorems and the Ljusternik-Schnirelmann theory, we investigate the existence, multiplicity and concentration of nontrivial solutions provided that $\varepsilon$ is sufficiently small.查看全文

## Solidot 文章翻译

 你的名字 留空匿名提交 你的Email或网站 用户可以联系你 标题 简单描述 内容 In this work we consider the following class of fractional $p\&q$ Laplacian problems \begin{equation*} (-\Delta)_{p}^{s}u+ (-\Delta)_{q}^{s}u + V(\varepsilon x) (|u|^{p-2}u + |u|^{q-2}u)= f(u) \mbox{ in } \mathbb{R}^{N}, \end{equation*} where $\varepsilon>0$ is a parameter, $s\in (0, 1)$, $1< p<q<\frac{N}{s}$, $(-\Delta)^{s}_{t}$, with $t\in \{p,q\}$, is the fractional $t$-Laplacian operator, $V:\mathbb{R}^{N}\rightarrow \mathbb{R}$ is a continuous potential and $f:\mathbb{R}\rightarrow \mathbb{R}$ is a $\mathcal{C}^{1}$-function with subcritical growth. Applying minimax theorems and the Ljusternik-Schnirelmann theory, we investigate the existence, multiplicity and concentration of nontrivial solutions provided that $\varepsilon$ is sufficiently small.
﻿