adv

Estimation of smooth densities in Wasserstein distance. (arXiv:1902.01778v1 [math.ST])

The Wasserstein distances are a set of metrics on probability distributions supported on $\mathbb{R}^d$ with applications throughout statistics and machine learning. Often, such distances are used in the context of variational problems, in which the statistician employs in place of an unknown measure a proxy constructed on the basis of independent samples. This raises the basic question of how well measures can be approximated in Wasserstein distance. While it is known that an empirical measure comprising i.i.d. samples is rate-optimal for general measures, no improved results were known for measures possessing smooth densities. We prove the first minimax rates for estimation of smooth densities for general Wasserstein distances, thereby showing how the curse of dimensionality can be alleviated for sufficiently regular measures. We also show how to construct discretely supported measures, suitable for computational purposes, which enjoy improved rates. Our approach is based on novel bo查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容