adv

Existence of the ground state for the NLS with potential on graphs. (arXiv:1707.07326v2 [math-ph] UPDATED)

We review and extend several recent results on the existence of the ground state for the nonlinear Schr\"odinger (NLS) equation on a metric graph. By ground state we mean a minimizer of the NLS energy functional constrained to the manifold of fixed $L^2$-norm. In the energy functional we allow for the presence of a potential term, of delta-interactions in the vertices of the graph, and of a power-type focusing nonlinear term. We discuss both subcritical and critical nonlinearity. Under general assumptions on the graph and the potential, we prove that a ground state exists for sufficiently small mass, whenever the constrained infimum of the quadratic part of the energy functional is strictly negative.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容