adv

A variational reduction and the existence of a fully-localised solitary wave for the three-dimensional water-wave problem with weak surface tension. (arXiv:1603.09189v2 [math.AP] UPDATED)

Fully localised solitary waves are travelling-wave solutions of the three-dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number $\beta$ greater than $\frac{1}{3}$) has recently been given. In this article we present an existence theory for the physically more realistic case $0<\beta<\frac{1}{3}$. A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容