## Complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs. (arXiv:1802.03504v1 [math.OC])

This paper analyzes the iteration-complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs. More specifically, the objective function is of the form $f + h$ where $f$ is a differentiable function whose gradient is Lipschitz continuous and $h$ is a closed convex function with bounded domain. The method, basically, consists of applying an accelerated inexact proximal point method for solving approximately a sequence of quadratic penalized subproblems associated to the linearly constrained problem. Each subproblem of the proximal point method is in turn approximately solved by an accelerated composite gradient method. It is shown that the proposed scheme generates a $\rho$-approximate stationary point in at most ${\cal{O}}(1/\rho^{3})$. Finally, numerical results showing the efficiency of the proposed method are also given.查看全文

## Solidot 文章翻译

 你的名字 留空匿名提交 你的Email或网站 用户可以联系你 标题 简单描述 内容 This paper analyzes the iteration-complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs. More specifically, the objective function is of the form $f + h$ where $f$ is a differentiable function whose gradient is Lipschitz continuous and $h$ is a closed convex function with bounded domain. The method, basically, consists of applying an accelerated inexact proximal point method for solving approximately a sequence of quadratic penalized subproblems associated to the linearly constrained problem. Each subproblem of the proximal point method is in turn approximately solved by an accelerated composite gradient method. It is shown that the proposed scheme generates a $\rho$-approximate stationary point in at most ${\cal{O}}(1/\rho^{3})$. Finally, numerical results showing the efficiency of the proposed method are also given.