adv

Complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs. (arXiv:1802.03504v1 [math.OC])

This paper analyzes the iteration-complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs. More specifically, the objective function is of the form $f + h$ where $f$ is a differentiable function whose gradient is Lipschitz continuous and $h$ is a closed convex function with bounded domain. The method, basically, consists of applying an accelerated inexact proximal point method for solving approximately a sequence of quadratic penalized subproblems associated to the linearly constrained problem. Each subproblem of the proximal point method is in turn approximately solved by an accelerated composite gradient method. It is shown that the proposed scheme generates a $\rho$-approximate stationary point in at most ${\cal{O}}(1/\rho^{3})$. Finally, numerical results showing the efficiency of the proposed method are also given.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容