adv

Complex Hyperbolic Geometry and Hilbert Spaces with the Complete Pick Property. (arXiv:1803.02459v1 [math.FA])

Suppose $H$ is a finite dimensional reproducing kernel Hilbert space of functions on $X.$ If $H$ has the complete Pick property then there is an isometric map, $\Phi,$ from $X,$ with the metric induced by $H,$ into complex hyperbolic space, $\mathbb{CH}^{n},$ with its pseudohyperbolic metric. We investigate the relationships between the geometry of $\Phi(X)$ and the function theory of $H$ and its multiplier algebra.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容