## Derivation and Extensions of the Linear Feedback Particle Filter based on Duality Formalisms. (arXiv:1804.04199v1 [math.OC])

This paper is concerned with a duality-based approach to derive the linear feedback particle filter (FPF). The FPF is a controlled interacting particle system where the control law is designed to provide an exact solution for the nonlinear filtering problem. For the linear Gaussian special case, certain simplifications arise whereby the linear FPF is identical to the square-root form of the ensemble Kalman filter. For this and for the more general nonlinear non-Gaussian case, it has been an open problem to derive/interpret the FPF control law as a solution of an optimal control problem. In this paper, certain duality-based arguments are employed to transform the filtering problem into an optimal control problem. Its solution is shown to yield the deterministic form of the linear FPF. An extension is described to incorporate stochastic effects due to noise leading to a novel homotopy of exact ensemble Kalman filters. All the derivations are based on duality formalisms.查看全文

## Solidot 文章翻译

 你的名字 留空匿名提交 你的Email或网站 用户可以联系你 标题 简单描述 内容 This paper is concerned with a duality-based approach to derive the linear feedback particle filter (FPF). The FPF is a controlled interacting particle system where the control law is designed to provide an exact solution for the nonlinear filtering problem. For the linear Gaussian special case, certain simplifications arise whereby the linear FPF is identical to the square-root form of the ensemble Kalman filter. For this and for the more general nonlinear non-Gaussian case, it has been an open problem to derive/interpret the FPF control law as a solution of an optimal control problem. In this paper, certain duality-based arguments are employed to transform the filtering problem into an optimal control problem. Its solution is shown to yield the deterministic form of the linear FPF. An extension is described to incorporate stochastic effects due to noise leading to a novel homotopy of exact ensemble Kalman filters. All the derivations are based on duality formalisms.