solidot新版网站常见问题,请点击这里查看。

Complex Charges, Time Reversal Asymmetry, and Interior-Boundary Conditions in Quantum Field Theory. (arXiv:1810.02173v1 [quant-ph])

来源于:arXiv
While fundamental physically realistic Hamiltonians should be invariant under time reversal, time asymmetric Hamiltonians can occur as mathematical possibilities or effective Hamiltonians. Here, we study conditions under which non-relativistic Hamiltonians involving particle creation and annihilation, as come up in quantum field theory (QFT), are time asymmetric. It turns out that the time reversal operator T can be more complicated than just complex conjugation, which leads to the question which criteria determine the correct action of time reversal. We use Bohmian trajectories for this purpose and show that time reversal symmetry can be broken when charges are permitted to be complex numbers, where `charge' means the coupling constant in a QFT that governs the strength with which a fermion emits and absorbs bosons. We pay particular attention to the technique for defining Hamiltonians with particle creation based on interior-boundary conditions, and we find them to generically be tim 查看全文>>