A PSPACE Construction of a Hitting Set for the Closure of Small Algebraic Circuits. (arXiv:1712.09967v1 [cs.CC])

In this paper we study the complexity of constructing a hitting set for the closure of VP, the class of polynomials that can be infinitesimally approximated by polynomials that are computed by polynomial sized algebraic circuits, over the real or complex numbers. Specifically, we show that there is a PSPACE algorithm that given n,s,r in unary outputs a set of n-tuples over the rationals of size poly(n,s,r), with poly(n,s,r) bit complexity, that hits all n-variate polynomials of degree-r that are the limit of size-s algebraic circuits. Previously it was known that a random set of this size is a hitting set, but a construction that is certified to work was only known in EXPSPACE (or EXPH assuming the generalized Riemann hypothesis). As a corollary we get that a host of other algebraic problems such as Noether Normalization Lemma, can also be solved in PSPACE deterministically, where earlier only randomized algorithms and EXPSPACE algorithms (or EXPH assuming the generalized Riemann hypot 查看全文>>