A note on 0-bipolar knots of concordance order two. (arXiv:1712.09622v1 [math.GT])

Let $\mathcal{T}$ be the group of smooth concordance classes of topologically slice knots, and $\{0\}\subset\cdots\subset \mathcal{T}_{n+1}\subset\mathcal{T}_{n}\subset \cdots\subset \mathcal{T}_{0}\subset \mathcal{T}$ be the bipolar filtration. In this paper, we show that a proper collection of the knots employed by Hedden, Kim, and Livingston to prove $\mathbb{Z}_2^{\infty} < \mathcal{T}$ can be used to see $\mathbb{Z}_2^{\infty} < \mathcal{T}_0/\mathcal{T}_1$. 查看全文>>