An adaptive $hp$-refinement strategy with computable guaranteed bound on the error reduction factor. (arXiv:1712.09821v1 [math.NA])

We propose a new practical adaptive refinement strategy for $hp$-finite element approximations of elliptic problems. Following recent theoretical developments in polynomial-degree-robust a posteriori error analysis, we solve two types of discrete local problems on vertex-based patches. The first type involves the solution on each patch of a mixed finite element problem with homogeneous Neumann boundary conditions, which leads to an ${\mathbf H}(\mathrm{div},\Omega)$-conforming equilibrated flux. This, in turn, yields a guaranteed upper bound on the error and serves to mark mesh vertices for refinement via D\"orfler's bulk-chasing criterion. The second type of local problems involves the solution, on patches associated with marked vertices only, of two separate primal finite element problems with homogeneous Dirichlet boundary conditions, which serve to decide between $h$-, $p$-, or $hp$-refinement. Altogether, we show that these ingredients lead to a computable guaranteed bound on the 查看全文>>