solidot新版网站常见问题,请点击这里查看。

新算法可通过步态精确识别身份

人工智能
WinterIsComing (31822)发表于 2021年07月22日 18时48分 星期四
来自部门
杭州电子科技大学博士生郑锦凯通过可迁移邻域发现算法,提升了跨域场景下的步态识别精度相关研究成果(预印本)在日前召开的IEEE International Symposium on Circuits and Systems 上公布。近年来,随着人工智能技术的发展,步态识别开始应用在公共场域身份识别中。步态识别,俗称“走姿”识身份,不同人的“走姿”是不一样的,走姿是人的“另一种身份”。另外,人在不同场域的步态也是不一样的,比如在超市里购物步伐偏慢,而在火车站赶车步伐急促,所以跨域步态识别为“走姿”识身份增加了难度。据了解,目前普遍使用的深度学习算法依赖数据标注,换言之,通过步态识别谁是谁,首先得在数据库里知道具体的步态是怎样的。这意味着,标注的准确性和数量直接影响着最终的识别精度。在实际应用中,人们往往受限于这种既昂贵又费时费力的数据标注上。如果数据库里没有具体人的标注数据,那怎么办?为此,郑锦凯提出可迁移邻域发现算法,首先找出高置信度样本,并通过最近邻算法找出这些样本的领域样本,之后通过损失函数拉近高置信度样本与其领域样本在特征空间中的距离,采用从易到难、循序渐进的方式更新深度学习模型。整个过程由近到远、由易到难、由已知到未知,逐渐识别“哪些步态是谁的”,从而锁定目标人物。