## Existence and nonexistence results for a weighted elliptic equation in exterior domains. (arXiv:1810.07343v1 [math.AP])

We consider positive solution to the weighted elliptic problem \begin{equation*} \left \{ \begin{array}{ll} -{\rm div} (|x|^\theta \nabla u)=|x|^\ell u^p \;\;\; \mbox{in $\mathbb{R}^N \backslash {\overline B}$},\\ u=0 \;\;\; \mbox{on $\partial B$}, \end{array} \right. \end{equation*} where $B$ is the standard unit ball of $\mathbb{R}^N$. We give a complete answer for the existence question when $N':=N+\theta&gt;2$. In particular, for $N'&gt; 2$ and $\tau:=\ell-\theta &gt;-2$, it is shown that the problem admits a unique positive radial solution for $p&gt;p_s:=\frac{N'+2+2\tau}{N'-2}$, while for any $0&lt;p \leq p_s$, the only nonnegative solution is $u \equiv 0$.查看全文

## Solidot 文章翻译

 你的名字 留空匿名提交 你的Email或网站 用户可以联系你 标题 简单描述 内容 We consider positive solution to the weighted elliptic problem \begin{equation*} \left \{ \begin{array}{ll} -{\rm div} (|x|^\theta \nabla u)=|x|^\ell u^p \;\;\; \mbox{in $\mathbb{R}^N \backslash {\overline B}$},\\ u=0 \;\;\; \mbox{on $\partial B$}, \end{array} \right. \end{equation*} where $B$ is the standard unit ball of $\mathbb{R}^N$. We give a complete answer for the existence question when $N':=N+\theta>2$. In particular, for $N'> 2$ and $\tau:=\ell-\theta >-2$, it is shown that the problem admits a unique positive radial solution for $p>p_s:=\frac{N'+2+2\tau}{N'-2}$, while for any $0<p \leq p_s$, the only nonnegative solution is $u \equiv 0$.
﻿