adv

Asymptotically stable random walks of index $1<\alpha<2$ killed on a finite set. (arXiv:1901.05568v1 [math.PR])

For a random walk on the integer lattice $\mathbb{Z}$ that is attracted to a strictly stable process with index $\alpha\in (1, 2)$ we obtain the asymptotic form of the transition probability for the walk killed when it hits a finite set. The asymptotic forms obtained are valid uniformly in a natural range of the space and time variables. The situation is relatively simple when the limit stable process has jumps in both positive and negative directions; in the other case when the jumps are one sided rather interesting matters are involved and detailed analyses are necessitated.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容