Fixed point sets in digital topology, 1. (arXiv:1901.11093v1 [math.GN])

In this paper, we examine some properties of the fixed point set of a digitally continuous function. The digital setting requires new methods that are not analogous to those of classical topological fixed point theory, and we obtain results that often differ greatly from standard results in classical topology. We introduce several measures related to fixed points for continuous self-maps on digital images, and study their properties. Perhaps the most important of these is the fixed point spectrum $F(X)$ of a digital image: that is, the set of all numbers that can appear as the number of fixed points for some continuous self-map. We give a complete computation of $F(C_n)$ where $C_n$ is the digital cycle of $n$ points. For other digital images, we show that, if $X$ has at least 4 points, then $F(X)$ always contains the numbers 0, 1, 2, 3, and the cardinality of $X$. We give several examples, including $C_n$, in which $F(X)$ does not equal $\{0,1,\dots,\#X\}$. We examine how fixed point查看全文

Solidot 文章翻译