adv

Optimal Weak Parallelogram Constants for $L^p$ Spaces. (arXiv:1802.04649v1 [math.FA])

Inspired by Clarkson's inequalities for $L^p$ and continuing work from \cite{CR}, this paper computes the optimal constant $C$ in the weak parallelogram laws $$ \|f + g \|^r + C\|f - g\|^r \leq 2^{r-1}\big( \|f\|^r + \|g\|^r \big), $$ $$ \|f + g \|^r + C\|f- g \|^r \geq 2^{r-1}\big( \|f\|^r + \|g \|^r \big)$$ for the $L^p$ spaces, $1 < p < \infty$.查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容